Investigation into Interactions between Accident Consequences and Traffic Signs: A Bayesian Bivariate Tobit Quantile Regression Approach

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian quantile regression

1. Introduction: Recent work by Schennach(2005) has opened the way to a Bayesian treatment of quantile regression. Her method, called Bayesian exponentially tilted empirical likelihood (BETEL), provides a likelihood for data y subject only to a set of m moment conditions of the form Eg(y, θ) = 0 where θ is a k dimensional parameter of interest and k may be smaller, equal to or larger than m. Th...

متن کامل

Bayesian Spatial Quantile Regression.

Tropospheric ozone is one of the six criteria pollutants regulated by the United States Environmental Protection Agency under the Clean Air Act and has been linked with several adverse health effects, including mortality. Due to the strong dependence on weather conditions, ozone may be sensitive to climate change and there is great interest in studying the potential effect of climate change on ...

متن کامل

Bayesian Spatial Quantile Regression

Statistical Science) Bayesian Spatial Quantile Regression by Kristian Lum Department of Statistical Science Duke University

متن کامل

Bayesian Quantile Regression Methods∗

This paper is a study of the application of Bayesian Exponentially Tilted Empirical Likelihood to inference about quantile regressions. In the case of simple quantiles we show the exact form for the likelihood implied by this method and compare it with the Bayesian bootstrap and with Jeffreys’ method. For regression quantiles we derive the asymptotic form of the posterior density. We also exami...

متن کامل

Bayesian Tobit quantile regression using g-prior distribution with ridge parameter

A Bayesian approach is proposed for coefficient estimation in Tobit quantile regression model. The proposed approach is based on placing a g-prior distribution depends on the quantile level on the regression coefficients. The prior is generalized by introducing a ridge parameter to address important challenges that may arise with censored data, such as multicollinearity and overfitting problems...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Advanced Transportation

سال: 2018

ISSN: 0197-6729,2042-3195

DOI: 10.1155/2018/5032497